Nitroxide paramagnet-induced para-ortho conversion and nuclear spin relaxation of H2 in organic solvents.

نویسندگان

  • Elena Sartori
  • Marco Ruzzi
  • Ronald G Lawler
  • Nicholas J Turro
چکیده

The kinetics of para-ortho conversion and nuclear spin relaxation of H 2 in chloroform- d 1 were investigated in the presence of nitroxides as paramagnetic catalysts. The back conversion from para-hydrogen ( p-H 2) to ortho-hydrogen ( o-H 2) was followed by NMR by recording the increase in the intensity of the signal of o-H 2 at regular intervals of time. The nitroxides proved to be hundreds of times more effective at inducing relaxation among the spin levels of o-H 2 than they are in bringing about transitions between p-H 2 and the levels of o-H 2. The value of the encounter distance d between H 2 and the paramagnetic molecule, calculated from the experimental bimolecular conversion rate constant k 0, using the Wigner theory of para-ortho conversion, agrees perfectly with that calculated from the experimental relaxivity R 1 using the force free diffusion theory of spin-lattice relaxation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distance-Dependent Paramagnet-Enhanced Nuclear Spin Relaxation of H2@C60 Derivatives Covalently Linked to a Nitroxide Radical

A series of H2@C60 derivatives covalently linked to a nitroxide radical has been synthesized. We report distance-dependent nuclear spin relaxivity of H2 in these derivatives. The results clearly indicate that the relaxivity of H2 is distancedependent and in good agreement with the Solomon-Bloembergen equation, which predicts a 1/r dependence. SECTION Kinetics, Spectroscopy N uclear spin relaxat...

متن کامل

Interaction of H2 @C60 and nitroxide through conformationally constrained peptide bridges.

We synthesized two molecular systems, in which an endofullerene C60 , incarcerating one hydrogen molecule (H2 @C60 ) and a nitroxide radical are connected by a folded 310 -helical peptide. The difference between the two molecules is the direction of the peptide orientation. The nuclear spin relaxation rates and the para → ortho conversion rate of the incarcerated hydrogen molecule were determin...

متن کامل

Paramagnet enhanced nuclear relaxation of H2 in organic solvents and in H2@C60.

We have measured the bimolecular contribution (relaxivity) R1 (M(-1) s(-1)) to the spin-lattice relaxation rate for the protons of H2 and H2@C60 dissolved in organic solvents in the presence of paramagnet nitroxide radicals. It is found that the relaxation effect of the paramagnets is enhanced 5-fold in H2@C60 compared to H2 under the same conditions. 13C relaxivity in C60 induced by nitroxide ...

متن کامل

Distance - Dependent para - H 2 f ortho - H 2 Conversion in H 2 @ C 60 Derivatives Covalently Linked to a Nitroxide Radical

W recently reported 1 distance-dependent nuclear spin relaxation (1/T1) of a series ofH2@C60 derivatives covalently linked to a nitroxide radical. The results show that T1 increases with the distance between the encapsulated H2 and the radical centers (r), and the relaxivity rate constant is proportional to r . Another aspect of interest for such H2@C60 derivatives is the distance dependence of...

متن کامل

Comparison of Nuclear Spin Relaxation of H2O@C60 and H2@C60 and Their Nitroxide Derivatives.

The successful synthesis of H2O@C60 makes possible the study of magnetic interactions of an isolated water molecule in a geometrically well-defined hydrophobic environment. Comparisons are made between the T1 values of H2O@C60 and the previously studied H2@C60 and their nitroxide derivatives. The value of T1 is approximately six times longer for H2O@C60 than for H2@C60 at room temperature, is i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 130 38  شماره 

صفحات  -

تاریخ انتشار 2008